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SOLUTI~S 

A class of exact particular solutions of the short-wave equations is investigated: the class 
in question generalizes the familiar solutions in [a, 23. The solutions are classified, 

Examples of new solutions are cited. 
Flows with small but abrupt changes in the flow parameters occurring in a narrow zone 

near the front of a propagating shock wave are described by the system of short-wave 

equations derived in [3]. The system of short waves, which constitutes a nonlinear sys- 
tem of equations of mixed type. is in a certain sense similar to the system of equations 

for steady transonic gas motions ; unlike the latter system, however, it cannot be trans- 

formed into a system of linear equations. This fact complicates the mathematical sta- 

tement and solution of the short-wave equations considerably, making it necessary to 
construct exact particular solutions with certain properties associated with a given class 
of physical problems. Such solutions have been obtained in various artificial ways in 

each specific case 12 - 51. The most general of the known solutions is the class of exact 
solutions derived in [l]. An example of a solution not belonging to the class obtained 
in [l] is constructed in [2]. 

3. The short-wave equations in the case of two-dimensional quasisteady flows of a 
perfect gas are of the form p] 

%? 
2&--Q x + g +2kp==O, 

av dy 
x- aY =O 

Here k = */% in the case of plane-parallel flows and k = i for axisymmetric flows ; 
the dimensionless functions CL, Y, 8, Y are related to the projections of the velocity on 
the radius vector u and on iu perpendicular v , and to the components of the polar sys- 
tem r, 6 by the equations 

u = a,M,p = aoM, v = a,M,I/‘la(x + 1) Mov (1.2) 

r = a,t ft + ‘/g (x + 1) Mdl, 1p = I’% (x + I) M,Y 

System (1.1) clearly admits of the following continuous group of finite transformations: 

8” = a2 (8 - c), Y” 3? a (Y - b) (1.3) 

P0 (a, I? = fza (p (8, Y) - cf, v* (6*, r0) = a3 (v (6, Y) f 2kcY - d) 

where a, 6, e, d are arbitrary constants which do not alter the form of the equations. 
Thus, if some solution p” =$ (SO, Y”), v” =Y’ (So, Y”) of system (1.1) is known, then 

all the equivalent solutions are obtainable from it by way of the formulas 

p (8, Y) = a-2p” (a2 (6 - c), a (Y - b)) + c 

y (S, y) = a-4’ (a2 (6 - c), a (Y - b)) - 2kcY f d (i-4) 

Formulas (1.4) enable us to construct the class of equivalent solutions with wider pro- 
perties (see [6] for information on the group properties of (1.1) ). Particularly useful are 
solutions p” = pa (S’, Y”), Y” = 9 (SO, Y”) of polynomial form in d or Y, where the 
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solutions constructed with the aid of (1.4) satisfy one of the conditions 

IL (6, Y) --_ D for 6 = c (1 ,S) 
Y(K, Y):zR for y,t> (I .li) 

In many problems of short-wave theory [l - 51 conditions (1.5), (1.6) with the appro- 
priate constants D, R, C, b play the role of the necessary boundaray conditions which the 

solutions of (1.1) must satisfy. 

2. Let the class of solutions of system 11.1) be defined by the biparametric represen- 
tation 

w 

6 = 2 x,, (4) 17’l” y = 2 v,* (5) qTL 
n-0 n -4) 8 

Here 01, p, y, CO are natural numbers, and the functions rp,, @;, x7, v. differ from zero. 

System (1.1) in the variables 4, 9 is of the form 

/ 6P aY I$ l3Y \ 
2({1---8) \,T ~-~~~j$ 

1: 
+ -+++ 

J 
-- 

/ as 3Y i?sav)=, 
-L?kui,5yjy - aq ac ; (2.2) 

8&L 86 au as av i3Y av l3Y 
--..-_A -- 
arl a< 

-=.--- 
3 % aE 3 a? 8% 

The planes &Y and tq are in one-to-one correspondence if the Jacobian 

.O (a, Yf iu (L 11) # 0 

and is bounded. 
Substituting (2.1) into (2.2) and equating the sum coefficients of equal powers of ?I 

in each equation, we obtain a system of ordinary differential equations of the first kind 

for determining the unknown functions ‘P,, *fir XnV v,* 
The general form of the differential equations of the system obtained in this way (for 

m powers of n) for the first and second equations of (2.2) is 

i [2 (cP,_[ - Xln-J g, i Xm-r h, - fm - 1 -t I) &-I+1 fll= 0 (2.3) 

l--O 

where the primes denote derivatives with respect to t. 

Here 
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For fixed values of CC, PI y, o in (2.1) series (2.3) break off, and the number of equa- 
tions in the system is finite. 

3, To determine the highest indices a, p, y, o, and thus to determine the forms of 
solutions (2.1) admitted by system (1.1) we must consider the problem of the compati- 
bility of the number of unknow functions and the number M of equations comprising 

system (2.3). 
Representation (2.1) formally contains a + is + y + w + 4 functions. However, this 

representation and system (2.2) admit of the transformation group 

rl = f (8 $ + g (E”), E, = F (47 (3.1) 

with arbitrary functions f (E”), g (Co), F (4”) which do not alter the form of (2.1) and 
(2.2). By suitable choice of functions f (co), g f<‘), F (5”) it is possible to ensure that 

certain functions are determined in final form for (2.1). We note that in the general 

case of representation (2.1) the number j of such functions is equal to three. When form 

(2.1) degenerates (e. g. in the absence of the zeroth power of 9) we have j = 2. Instead 
of (3.1) in this case (2.1) admits of the transformation 

‘I = j(E”)n”, 5 = J”(E”) 

Without limiting generaliq , we can explain the foregoing by considering representa- 

tion (2.1) for 6 and Y. For example, let 

4” = x,(4) (3.2) 

and let f (p) and g (v) be chosen in such a way that on substituting (3.1) into (2.1) we 
obtain the vlaues V): (E”) ==-1, v;_, (E”) = 0 (3.3) 

If we omit the subscripts in expressions (3. l), (3.3), then the formal result of transfor- 
mations (3.1) consists in the fact that j functions have been determined in representation 

(2, I) and the number of ~known functions is a i- fl i- y i- 0 + 4 - 5. 
To determine the number M of equations in the system of ordinary differential equa- 

tions obtained from (2.3), we determine the highest powers of 11 for the various terms 

in Eqs. (2.2) upon substitution of (2.1) into these equations. This yields three distinct 
combinations (J1, J,, J3) for the first equation and two combinations (Jo, Js) for the 
second, J,=za+ o--l, .r,-_a+y+o-I, J,=B+Y---l (3.41 

Jb=fi+o--l, J,=a+y--l 

The number M of equations is determined by the sum of maximum powers of n in the 
first and second equations of (2.2). 

M = max {JIJ,,J,} + max (J4, J,) -I- 2 (3.5) 

which brings us to the consideration of six distinct combinations of relationships among 

exponents (3.4). 
The correspondence between the number of unknowns and the number M of system 

equations is determined by the condition 

a+fi+Y-t-@+4-j=M++ (3.6) 

where q is the determinacy coefficient of the system (the system is determined for 

9 = 0 , overdetermined for p < 0 , and underdetermined for q > 0 ). 
It is interesting to note that the number i = q f j is uniquely determined by the com- 

bination a, 0, y, o in accordance with (3.6) and (3.5). 
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The case where exponents (3.4) are equal for each equation of (2.2) immediately 
gives us the solution with 

U = 2 (4 - i), @ = 3 (4 - i), y z 2 (4 - i), 0 E 4 - i 

This is analogous to the case considered in fl] for the system of equations of transonic 

gas flows. 
Considering the various combinations of a, p, v, o and eliminating the case ‘9 = 

= 0 = 9, where D (6, Y) / 0 (ri;, TQ =r 0, we can generally establish quite readily in 
accordance with (3.5). (3.6) that the number i < 3. This means that for the general 
form of solution (2.1) where j = 3, the number q < 0 , and according to (3.6) we can 

only have determined and overdetermined systems of ordinary differential equations. 
In the case of determined systems of ordinary differential equations for 4 = 0, i == 3 

the parameters a, fi, y, o assume the values 

@<a<2, O<pG3, O<y<2, Ododi (3.7) 

Hence, it is most convenient to classify solutions (2.1) according to y and o. This 
gives rise to four basic combinations of values (y, o) , 

Wh (f,l), Wh (*to) w1 

This corresponds to four types of solutions with distinct values of (a, p) 

(2,3), (i&Z), (0, 1) for y = 2, 0 = 1 (3.9) 

(2, 2), (fyi), (O,l), (O,O) for y = i, 0 = 1 (3.10) 

(O,l), (0,O) for y = 0, 0 = i (3.11) 

(2,3), Cl,% (l,f), (O,f), (W) for Y = i, 0 = 9 (3.f2) 

4, Let us consider the problem of using transformation (3.1) for the resulting types 

of solutions (3.8). The form of the equations of system (2.3) is simplest when the func- 

tions f (F,“), g (4’1, P (4”) are chosen on the basis of the form of the representations for 

Y and d. 
Then for 0 = 1 for Y 

Y=vo(E;)+v1(4)r), 6 = c Xn(f)V (Y = 0, 1, 2) 
TESS0 

setting 6” = xy (4) (the inverse function 4; = F (f”)), 

f (4”) = i I % ml g (E") -- -ve (Y") I VI (F"), 

recalling result (3.3). and omitting the indices, we find that 
Y-l 

Y=?, &= yJ Xn(QP + EYY (Y -0A2) (4.1) 
?%=O 

Transformation (3.1) is nondegenerate (vr # 0 for w =1 1) if X,‘(C) # 0 and is 
bounded. Thus, in the cage o = 1, if X, (E) is not a constant, we have (4.1) and solu- 
tions (2.1) of polynomial form in Y. 

In the case y = i for 0 

6 = x0 (E) + b (4) 111 Y = F.i v,(s) $ (0 = 0, 1) 
n-o 

we obtain, as in the previous case, o-l 

(4.2) 
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Transformation (3.1) is nondegenerate (x1 # 0 for 1 = 1) if v,‘(S) #Oand is bounded. 
Hence, in the case y = 1, if v, (4) is not a constant, we have (4.2). and solutions (2.1) 

are of polynomial form in 8. 
Thus, determination of solutions of the form (2.1) and the use of transformation (3.1) 

yields solutions for which one of the functions (XY (4), v, (4) in the cases o = 1,~ = 1) 
is not a constant. Since the form of the solution is not known in advance, one can gene- 

rally assume the reverse, i. e. one can verify the existence of solutions with a constant 
value of this function in each specific case. If such solutions, in fact, do exist, we shall 
call them “lost” solutions. 

6. Let us write out the resulting system of differential equations in general form. This 
basic system of equations is obtainable from (2.3) in accordance with (3.7) for a = 2, 
/3=3,y=2, o,;i 

tcpz - xz) & - 2x&s + xz’Ha = 0 

@a - xz) & + (cpr - xl) K, - 2x& + xZ’HZ - x#& + x;H, = 0 

(CPZ - xz) K, + (cpl - xl) K, + (rp, - xo) K, - 2x8, + x%‘H, - ~1% + xl’& + 
+ y_,,'H, = 0 

(% - xl) Ko + (cpo - x0) 4 - 2x2Go -xl'%+ x~'H,f ~0'4 = 0 

(90 -x0) Ko - x&, + x0'% - 0 (5.11 

$)B% - 3&vr’ + 2%‘X% - 2%X%’ = 0 

%a 1 'V - W2Vl' - 399vo’ + W,‘xa - %Xz’ + cpa’xr - 2%X1’ = 0 
%‘vr - 91%’ - 2pnvo’ + 2Vo’L + (P1’xr’ - PlW’ - 2cPaxQ’ = 0 

90 1-910 'V V ' + 'PO'Xl -r&b' = 0 

Here 
Ki = ‘pi Vl - (2 - i) 22i-‘(pi+lV~’ - i(p.fVl’ (i = 0, 1, 2) 

Gj =Yz*~ + (3 - i) 
j (~-j)@-j)kqjVo' + i(l-j)(2-j)(3-j)kcpj_lVl' 

(j = 0.1, 2, 3) 

Hz = l/W + kcpl_iVl (I = 1, 2, 3) 

Let us note some of the properties of system (5.1). System (5.1) contains nine equa- 
tions which can be used for determining nine unknowns provided one specifies three 
functions (j = 3) in accordance with (3.1). System (5.1) remains determined if we 
convert to the “symmetric” form of the solutions, when 

w (5) =4J2 (4) =90 (4) = Xl(E) = Vo (5) = 0 

P = 'Pa (5) q2 + 90 (4), V = 9.3 (4) v + $1 (5) q (5.2) 
8 = x2 (E) q2 + x0 (4) y = Vl (E) q 

In fact, we readily perceive that the system itself now contains five equations for five 
unknowns, since in this case one needs to specify two functions 0’ = 2) only. 

Moreover, in the particular case of (5.2) where 

t.L = ‘pa (E) ll2, v = $s (4) VI 8 = xz (E) q27 y = vt (E) ? (5.3) 

for 'PO (E) = $1 (5) = x0 (E) = 0 system (5.1) reduces to two equations for determining 
two functions (j = 2). 

Similarly, for ‘Pe (5) = $s (5) = 0 we obtain a system of three equations with three 
unknown functions for solutions of the form 

P = 90 (E), v = *l(4) ?I 6 = Xe (4) ll* + YJJ (E), y = Vl(4h (5.4) 

Solutions of symmetric type usually satisfy a condition of type (1.6) and are therefore 
of particular practical interest. 
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6, Setting a a 2, fi - 3, y = 2, o = i in general form (2.1) of the solutions and set- 
ting 

X2 (F) = E, v1 (5) = 1, vo (5) = 0 (6.1) 

we find in accordance with (4.1) that (2.1) and (5.1) yield the familiar class of solu- 
tions derived in @I, 

P = ‘Fz (9 Y2 + Vl 6) y + 'PO (8 

v = 21.3 (E) I'3 + $2 (5) Ya + $1 (8 y ++o (8 (6.2) 

6 = EYZ + Xl my + x0 (9 

We also obtain the corresponding system of differential equations. This system is inves- 
tigated in detail in [I]. Most interesting from the physical standpoint are the symmetric 

solutions of the form (5.2) - (5.4). Such solutions of form (5.2) have been constructed 
and used for the solution of problems with a rectilinear boundary (problems of shock- 

wave reflection from rigid walls and free surfaces) [l, 4, 51. 

Solutions of the form (5.3) in the case (6.1) bring us to the case of self-similar solu- 

tions of (1.1). namely to 

P = Y%s (Ej, v = Ya$\1,3 (8, j = 6 I Y2 (6.3) 

which, for example for x: = l/z, are of the form 

p = Y* [CrE - cr (Cl - l/2) + 3%1/X - %I 

v = 2Ya [c2 (E - 2c,) Jfirg - cr -Cl (Cl - l/d 5 + c3l 

Examples of symmetric solutions of the type (5.4) for k = l/, and k = 1 are con- 
structed in [3]. 

7, Let us investigate the class of “lost” solutions of basic system (5.1) for 

20 (5, = a, VI (5) =I 1, VO(<) == 0 (a const) (7.1) 
of the form 

[I = (I‘2 Gj Y2 + ‘PI (Ej Y -T- y’o (Cj 

From the first and sixth equations of (5.1) with allowance for (7.1) we obtain ‘pz = cp, 
$3 = C3. For a # @, setting 

‘fz = a (1 - 2a), l/Is = 2/$2 (1 -.&I) (2a - JCj (7.3j 

we find that the second and seventh equations of (5.1) (with allowance for (7.l))coin- 
tide. For n = 0 the functions era = 0. I(‘? == 0 , and the second equation of (5.1) is 

satisfied identically. 
In both cases the systems corresponding to (5.1) become determined following the 

transformation F (ij = r. Further on we shall take as our F (E) one of the functions of 
system (5. l), which together with (7; 1) is equivalent to (3.1). 

Let us consider symmetric solutions (cpI = I&+, = x1 = & = 0) of type (5.2), (5.4) 
which system (5.1) admits for form (7.2). 

For n #= 0, xn (:) = ?, for solutions of type (5.2) ((3. 9), u. = 2, p = 3) , 

!L .= (!‘$ (5) Y2 + ‘PO (;;), v = $3 (j) Y” f $I1 (Z) Y, 6 = (g+; (7.4) 

system (5.1) reduces to a differential equation for v,, (:) , namely to 

cc{,, ~. ;) qO’ -+ (h_ - u) ‘r’,, -t a (1 -- ?a) ; + ‘!+ - !J (i.3) 

to formulas (7. 3) for q2, $3 , and to the following expression for +I : 
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& = 2%~~ - 2aT0 + ct (7.6} 

Solutions (7.4) in this case are similar to the solutions in [8] for the equations of tran- 

sonic gas motions. The form ‘pO (%) of solution (7.5) depends on the sign of D = 9~2% - 
- 2a (k + 1) + (1 - k)*. 

We note, for example, the case D > 0, which is of particular practical interest. Here 

the family of solutions of (7.5) has asymptotes and can be expressed as 

\u-- pz /P-l/ 11 u - qsp = c tc > 0) (7.7) 
Here 

u=cPo(%)--A, x=z--A, A = 1/S cl (2a8 - k)-I, a # f f@ 

p = 1/2 (a + I - k + I% q = It, (a + 1 - k - I/@ (7.3) 

The singular solutions u = pz, u = qz of (7.5) define the asymptotes for family (7.7). 
One such solution for k = lia was used in 1[2] (in solving the problem of regular reflec- 
lion from a rigid wall). 

In the case a = & vkI2 the solutions of (7.5) are given by the expressions 

l/scr In 11. (cpO - 5) 4 Vz cJ = r2 (E + c) + r&f, - 5) (7.9) 

‘pO = (1 - r) Ii, + c,, cpo = 5 - 1/2c,~-1 for r = i+kql/k/2 

The particular case of symmetric solutions of the form (5.4) ((3.9). a = 0, j? = if 
results from (7.4) for a = l/s, when va = 9s = 0. Setting q0 (5) = %, in accordance with 
(3.1) for the solution of the form 

P = %, v = I- 5 + Cl1 y, 6 = aye + x0 (E) (7.10) 

we obtain 
X0 1%) = &k +‘% + ?$cl for k = ‘is 

Xo (%) = c (% + s)’ + 2(% + cr) - c1 for k = i 

8, The class of “lost” solutions of (7.2) in the particular case a = 0 (~pr = 9s = 0) 

leads to the cases y = 1, w = 1 (3.10), y = 0, o = i (3.11). 

We obtain solutions for y = 1, o = 1, a = 1, b = 2 (3.10) of the form 

p = ‘PI (%.) y + ‘PO (E). v = 42 (5) p + &(%I y +40 (%I, s=%r+Xo(%) @.*I 

by solving system (5.1) with allowance for (7.1) for Q -2: 0, x1 (5) = %. With allowance 
for (7. l), we find from the seventh equation of (5.1) that 

$2 = Cl (8.2) 

The third equation of (5.1) with allowance for (8.2) yields the following equation for ql: 

(cpz - Ef 91’ + Np, + cr = 0 (3.3) 
with solutions of the form 

‘PI = -(2$-l [4ccr + 1 f )/4ccr + i + Zc%], ‘PI = -2c, 

for k = Va , and of the form 

(8.4) 

(cpl + Q) In (rcr + G) + c (n + G) = 5 + cl, ‘pl = - cl (8.5) 
for k = 1 . 

In ali cases where rpl # -Q / k system (5.1) reduces to the solution of the following 
Abel equation of the second kind for cpo: 

L (f) ‘pO’po’ + 0 (f) ‘P; + K (%I ‘po8 + N (%) ‘PO -I- M (6) = 0 (3.6) 
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with the coefficients given by 

L (f) = f + (k - f) g / h, N (E) = f (g f h)’ + keh’t-‘)‘R, ‘P; + kg 

K (E) = k (g/k)’ M (E) = f [ch(l-kl’k’pl’ + X0’] 

8 (E) = ‘& Ea + f (g f h) - ch”” - x0 
Here 

g = E - ‘PI. h = cl + Q,, f = ‘A ($1 - b,) 

and %, (5) is an arbitrary particular solution of the equation 

2 (CI -6 krp, )x0’ - 2%‘xo = @‘r’ - $1 

The functions $r, qO, x0 are given by the formulas 

$1’ = ‘Pr - S%‘V 9; = ‘PIXol - &0’ (8.7) 

&I = c fer + J%Pk + (E - irl) (CI + ~%)-‘rpcl + Ilo 

For example let us cite the solution for k = Vzr rpl = Vz (E - 24 (q results from 
(8.4) for c = 0) 

V = -Cl [2Cp, (E)+cs (f + Zc,)$ + czlfcs A- 9 WA3 + CIW-(GE - 4 y + c,p WV 

8 = 2% (E) + c3 (E + 2c,)2 + cz + E.y 

Here 
‘pO (g) = (E + 2~~) PC, In tE t %I - ‘125 + 4 - c2 

For ~1 = -cl / k system (5.1) becomes considerably simpler and the solutions can be 
written in finite form. 

More particular forms of solutions(8.1) with a < 1 @ < 2 (3.90) are obtainable in the 
same way as the above solutions for c1 = 0. 

In the case y = 1, w = 1 system (5.1) admits of “lost” solutions for x1 (t) = a (a - 

-const) which for (k = ii2, 1) are linear functions of 8, Y for t_t and v. For a := 0, 

‘p,, (E) = E we arrive at the case y = 0 , o = 1. 

The solutions for y = 0, o = 1, a == 0, b = 1 (3.11) of symmetric form of type (5.4) 
are 

P = %. v = c,Y, 6 = x0 (E) (8.9) 
Here 

XO (E) = c (5 + da + 2 (E + cl) - cl for k = Va 

x0 (f) = -‘/SCl - (E -i- “i2cJ In c (5 + VZcl) for k = 1 

Solutions (8.9) for c1 = 0 (one-dimensional flows) are similar solutions obtained in 
[9] and used for solving problems on the decay of weak shock waves. 

9, For y = 1 representation (2.1) is of polynomial form in 6, and as noted above, the 
solutions in this case can satisfy conditions of type (1.5) on the line of parabolicity of 

Eqs. (1.1) (the “sonic” line & = F = c). 
To construct the solutions corresponding to y = 1, o - 1 (3.10) for v1 (E) = k, XI (f;) = 

=l, X,,(g)=Ooftheform 

FL = ‘pi (E) 8 4 ‘PO C.), v = $!A (E) aa fQ1 G) 6 f40 (E)* Y = ?A + yo (E) (9.1) 

we can make use of the above results for solutions of the form (8.1) rewritten in powers 
of b. 

It is easy to show that the transformation 

E --_ 1 / 5”, Y = EU 1s - x0 (1 / E”)f (9.2) 

transforms any solution of the form (8.1) into a solution of the form (9.1). For example, 
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solution (8.8) can be rewritten as 

F” = cxexo (E-r) - 1/2cs (5-l + 2cJS - ‘/aca + l/a (1 - 2CI%) 8 

v = clEaXoa (%--‘) - ca%xo (k’) + cs (lls%-s + Cl%-? + (9.3) 
+ ca - (2c,%aXo (5-Y + Cl - es%) 8 + c1%*8* 

y = -%x0 (f-l) + es 

(where the indices have been omitted). 
Here 

&(Z f %) = (%--I + 2cJ I4cJn (%-I + 2C,) 4 (Cs - 1) (%--I + 2c,) + 2sl f k” - cs 

In another case, for y = I, w = 0 (3.12), setting vg = %, xr = -i, x0 = c, we obtain 
the solutions of the form 

P = ‘Pa (Y) (c - @a + ‘pl (Y) (c - 6) + 90 (Y) 

v=~,s(Y)(c--S)s+g,(Y)(c--)a+91(Y)(C-8)+~o(Y) 

in the general case. 

(9.4) 

The corresponding system of differential equations obtainable by way of (5.1) reduces 
to the differential equation 

‘Pa” + 12v,’ = 0 (9.5) 
with the solutions 

R = -l/s P (Y + cg), 0% = 0 (Q-6) 

(where $(Y + cn) is a Weierstrass function with the invariants ga = 0, gs = ~1) and 

to the system of linear differential equations 

cpr= + 12cp!Lrg, = 4 fk - 2) (Pal $,I = -‘iz& 

(~0” -+ ~CP,FP, = ~c(P, - 2~1 (Q’P, + f - k), ‘$1 = --‘PO’ (Q-7) 

90’ = --2bo + 2 (cpo - 4 ~1, 4% = -1/d’p3’ 

For example, let us cite the solution for k = I/*, cp, = -VI !# (Y + c%)of the form 

p = -l/z 0 (Y + c,) (c - a)a - l/r (c - a) -I- c 

v = ‘Lie Yp’ (Y $ ca) (E - 8)s - c (Y f CQ) + cc (Q-8) 

The solutions for a < 1, P B 2 (3.12) are obtainable for q+ = 0 and are of the form 

P = qi (Yf (c - 6) i- ‘PO (Y) 
Y = --l/z ‘pr’ (Y) fc - 8)2 --~~(Y)fc--)+~o(Y) (9.9) 

Here lcIo can be determined from (9.7), 

Vl = c1Y + ca (9.10) 
‘p. = -[“/sc,2Y4 +l/g cl (2c, + 1 - k) Ys + c2 (c2 + 1 - k) Ya + csY -i- c,] 

Solutions (9.8) are similar in form to the solutions obtained by L. V. Ovsiannikov for 

the equations of Uansonic gas motions. We note that if the functions +o, ‘pO are constant 

in solutions of the form (8.1). (9.1). (9.4) (this can often be achieved by assigning suit- 
able values to the arbitrary constants), then transformation (1.4) enables one to obtain 
solutions (for example (9.8)) which satisfy conditions (1.5). (1.6). 

In conclusion let us consider the app~cabi~~ of the above solutions to specific prob- 

lems. Tr~forma~on group (1.4) enables us to express most of the resulting solution in 
a form which satisfies conditions (1.5). (1.6). However, conditions (1.5), (1.6) are 
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merely the simplest of the conditions used in short-wave problems, so that the problem 
of applicability of a given solution to the investigation of a specific problem depends 

on whether it is possible to solve the problem not only with allowance for (1.5), (1.6) 

(or independently of the latter) but also to satisfy the specific conditions (characteristic 
features) of the given problem. 

We note that the proposed method of constructing exact particular solutions can be 
used in similar fashion in dealing with other nonlinear systems of partial differential 

equations (e. g, the equations of short waves in a viscous heat conducting gas, the equa- 
tions of transonic flows of a perfect and viscous gas). 

The author is grateful to S. V. Fal’kovich and B. I, Zaslavskii for their comments and 

advice on the present study. 
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